

CURRENT AND FUTURE COSMOLOGICAL PROBES OF DARK MATTER MICROPHYSICS

MARKUS R. MOSBECH

Overview

- Quick intro
- Our test case model
- Gravitational waves as a novel type of constraint
- Supplementary constraints
- Thanks to collaborators:
 - Alex Jenkins, Sownak Bose, Celine Boehm, Mairi Sakellariadou, and Yvonne Wong

M. Mosbech, A. Jenkins, S. Bose, C. Boehm, M. Sakellariadou, & Y³ Wong Gravitational-wave event rates as a new probe for dark matter microphysics arXiv:2207.14126

M. Mosbech, C. Boehm, S. Hannestad, O. Mena, J. Stadler, & Y³ Wong The full Boltzmann hierarchy for dark matter-massive neutrino interactions arXiv:2011.04206

M. Mosbech, C. Boehm, & Y³ Wong Probing dark matter interactions with SKA arXiv:2207.03107

WHAT DO WE KNOW ABOUT DARK MATTER?

- Quite a lot of it out there
- Zero, or very limited, interactions with the standard model
- Clusters gravitationally, at least on large scales
- Essentially: we know a lot about what it is *not*, but not a lot about what it *is*
 - So what can gravitational waves tell us?

How can we learn more?

- Laboratory experiments
 - Direct Detection
 - Colliders
- Astrophysical signals
 - Indirect detection annihilation/decay
 - Structure formation

Dark matter as the seeds of structure

- The universe begins in a very homogeneous state
- Baryons are strongly coupled to photons, whose pressure prevent collapse
- Non-interacting dark matter feels no such pressure, letting it form structures early

Dark matter models with suppressed structure

- Three broad categories:
 - Warm dark matter
 - Supresses structure due to thermal velocity, if thermally produced $M \sim \mathcal{O}(\text{keV})$
 - Ultra-light dark matter
 - Suppresses structure due to wavelike behaviour, $M \sim \mathcal{O}(10^{-22} \, \text{eV})$
 - Interacting dark matter
 - Suppresses structure due to scattering

Our example model: DM-v scattering

- Good baseline model baryonic and photon physics remain unaffected
- Neutrino physics has remaining open questions, e.g. masses
- For simplicity: velocity independent scattering

Linear evolution

- Linear Boltzmann equations are useful for describing early evolution $(z \ge 50)$, and large scales (e.g. BAO)
- Super good for CMB predictions
- Produces initial conditions for nonlinear simulations

Linear evolution equations

• Dark matter:

$$\dot{\delta}_{\chi} = -\theta_{\chi} + 3\dot{\phi}$$

$$\dot{\theta}_{\chi} = -\frac{\dot{a}}{a}\theta + k^{2}\psi + K_{\chi}\dot{\mu}_{\chi}(\theta_{\nu} - \theta_{\chi})$$

$$C_{\chi} = a u_{\nu\chi} \frac{\sigma_{\text{Th}} \rho_{\chi}}{100 \text{ GeV}} \frac{p^2}{E_{\nu}^2}$$
$$u_{\nu\chi} = \frac{\sigma_0}{\sigma_{\text{Th}}} \left(\frac{m_{\chi}}{100 \text{ GeV}}\right)^{-1}$$

$$\dot{\mu}_{\chi} \equiv \frac{3k}{4} \frac{\int p^2 dp \ p \ f^{(0)}(p) \ C_{\chi}(p) \left(\frac{\theta_{\chi} E_{\nu}(p)}{3k \ f^{(0)}(p)} \frac{df^{(0)}(p)}{dp} + \Psi_{\nu,1} \right)}{\int p^2 dp \ p \ f^{(0)}(p)}$$

Neutrinos (non-zero mass)

$$\dot{\Psi}_{\nu 0} = -\frac{pk}{E_{\nu}(p)} \Psi_{\nu 1} - \dot{\phi} \frac{d \ln f^{(0)}(p)}{d \ln p}
\dot{\Psi}_{\nu 1} = \frac{pk}{3E_{\nu}(p)} (\Psi_{\nu 0} - 2\Psi_{\nu 2}) - \frac{E_{\nu}(p)k}{3p} \psi \frac{d \ln f^{(0)}(p)}{d \ln p}
+ C_{\chi} \frac{v_{\chi} E_{\nu}(p)}{3f^{(0)}(p)} \frac{df^{(0)}(p)}{dp} - C_{\chi} \Psi_{\nu 1}
\dot{\Psi}_{\nu l} = \frac{1}{2l+1} \frac{pk}{E_{\nu}(p)} (\Psi_{\nu(l-1)} - (l+1)\Psi_{\nu(l+1)}) - C_{\chi} \Psi_{\nu l}
\dot{\Psi}_{\nu 2} = [...] - \frac{9}{10} C_{\chi} \Psi_{\nu 2}$$

"All roads lead to Rome": The suppressed matter power spectrum

- The three "types" of models are easily tuned to suppress structure at similar scales
- Different models may have qualitatively different signals below the suppression scale

Promising hints

- Lyman- α data prefers a non-zero interaction strength
- Preferred value $u_{\nu\chi} \sim 5 \cdot 10^{-6}$
- New analyses of SPT and ACT CMB data also reveals preference for non-zero interaction

Giarè et al., arXiv:2311.09116

From suppressed structure to gravitational waves

- 1. Suppressed structure
- 2. Less/delayed galaxy/progenitor formation
- 3. Less/delayed star formation
- 4. Fewer/delayed black hole binaries formed
- 5. Fewer binary black hole mergers detected

Simulating suppressed structure

- For the purpose of the GW signal, our main interest is in the halo mass function
- Problem: unphysical fragmentation causes upturn at low masses for suppressed structure cosmologies

Avoiding fragmentation: Analytic HMF?

- Standard Sheth-Tormen HMF does not accurately capture suppression
- Boxes stitched together with unphysical tail removed – not suitable for generating galaxy populations

Avoiding fragmentation: Analytic HMF?

$$\frac{n_{\rm idm}}{n_{\rm cdm}} = \frac{1}{1 + \left(\frac{M_{\beta}}{M}\right)^{\alpha}} \qquad \beta = 10\%, \qquad \alpha = 0.9$$

Generating galaxy populations

- We generate realistic galaxy populations for our model with Galform
- To avoid issues with artificial fragmentation, we generate galaxy populations with a Monte Carlo method.
- Extended Press-Schechter method reproduced our fitted HMF

Hierarchical Merger tree

- Progenitors generated through Monte Carlo
- Galaxy merger physics determines star formation, metallicity etc
- Resolution set by smallest tracked progenitor

Impact on galaxy populations

- Strong interactions ruled out already
- Sets strongest bounds yet on this interaction rules out Ly- α preferred value

Generating compact binary population

- Compact binaries form from massive binary star systems
- Compact binary formation rate → delayed tracer of star formation
- Not so simple: conversion from binary star to compact binary depends on metallicity

Image: COMPAS team, compas.science

See:

arXiv:2109.10352 arXiv:2010.00002 arXiv:1806.05820 arXiv:1906.08136

Binary formation rate

- Computed by Compas from Galform output
- Generates binaries over cosmic time using differential star formation rate and metallicity
- Draws from stellar tracks computed with stellar evolution code MESA

Formation and coalescence

- Coalescence time also drawn from Compas based on generated population
- Essentially a time-folding of the formation rate

Constraining DM with LIGO/VIRGO/Kagra

- Current generation of GW observatories "only" constrain the rate well at low z.
- Current constraints on local GW rate not strong enough to rule interacting DM out (or in)
- With our modelling, Λ CDM is at the upper end of the allowed range.

Beyond LVK: The next generation

- The rate is strongly affected by delayed structure formation
- High-redshift observations will be ideal for constraining these models
- Einstein Telescope + Cosmic Explorer provides high-redshift sensitivity

Image: Einstein Telescope, https://www.et-gw.eu/

Next generation detection forecast

 The next generation can see almost every event

This will be able to set powerful constraints

Binary formation uncertainty

- Binary formation/merger model relies on set of astro parameters
- Qualitative effect on formation/merger rate different than interacting DM

Compare and contrast: warm dark matter

- Our interacting models are indistinguishable from warm dark matter at $z \leq 10$
- The upside of which: constraints on warm dark matter can be directly mapped to interacting models

m_{wdm}	$u_{v\scriptscriptstyle DM}$	$u_{\gamma DM}$
1 keV	8.5×10^{-7}	4.0×10^{-7}
2 keV	1.75×10^{-7}	9.0×10^{-8}
3 keV	7×10^{-8}	3.5×10^{-8}
4 keV	3.6×10^{-8}	1.8×10^{-8}

Complementary constraints: 21cm with SKAO

- SKAO forecasts on WDM constraint can be mapped to interacting DM
- At early times, nonlinear evolution has not yet erased oscillations
- ${f \cdot}$ High-precision, high redshift measurements at high k needed to distinguish
- SKAO can in principle measure the 21 cm line at these redshifts.

Conclusions

- Next generation GW observatories can be used constraining suppressed structure, improving limits
- SKA will be able to similarly constrain DM models with suppressed structure
- High redshift measurements will be key to distinguishing between models suppressing small scale power

Data	Max $u_{ u_{DM}}$	Source
Planck + SDSS	$\sim 3 \times 10^{-4}$	Mosbech et al. arXiv:2011.04206
Planck + SDSS+Ly $lpha$	~10 ⁻⁵	Hooper & Lucca arXiv:2110.04024
ACT/SPT + BAO (+ Planck)	~10 ⁻⁴	Giarè et al. arXiv:2311.09116
SKA 21cm line intensity map	\sim 4 × 10 ⁻⁸ *	Mosbech, Boehm, & Wong arXiv.2207.03107
2dF galaxy counts	$\sim 3 \times 10^{-6} - 10^{-7}$	Mosbech et al. arXiv:2207.14126
Einstein Telescope + Cosmic Explorer	~4 × 10 ⁻⁷ *	Mosbech et al. arXiv:2207.14126

^{*:} Forecast - constraint assuming non-detection

