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Overview

• Quick intro
• Our test case model
• Gravitational waves as a novel type 

of constraint
• Supplementary constraints

• Thanks to collaborators:
• Alex Jenkins, Sownak Bose, Celine 

Boehm, Mairi Sakellariadou, and 
Yvonne Wong

M. Mosbech, A. Jenkins, S. Bose, C. Boehm, M. Sakellariadou, 
& Y3 Wong
Gravitational-wave event rates as a new probe for dark 
matter microphysics
arXiv:2207.14126

M. Mosbech, C. Boehm, S. Hannestad, O. Mena, J. Stadler, & 
Y3 Wong
The full Boltzmann hierarchy for dark matter-massive 
neutrino interactions
arXiv:2011.04206

M. Mosbech, C. Boehm, & Y3 Wong
Probing dark matter interactions with SKA
arXiv:2207.03107
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• Quite a lot of it out there
• Zero, or very limited, interactions 

with the standard model
• Clusters gravitationally, at least on 

large scales

• Essentially: we know a lot about what 
it is not, but not a lot about what it is

• So what can gravitational waves tell us?
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WHAT DO WE KNOW 
ABOUT DARK MATTER?
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How can we learn more?

• Laboratory experiments
• Direct Detection
• Colliders

• Astrophysical signals
• Indirect detection – 

annihilation/decay
• Structure formation
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Dark matter as the seeds of structure

• The universe begins in a very 
homogeneous state

• Baryons are strongly coupled to 
photons, whose pressure prevent 
collapse

• Non-interacting dark matter feels 
no such pressure, letting it form 
structures early
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Dark matter models with suppressed 
structure
• Three broad categories:

• Warm dark matter
• Supresses structure due to thermal velocity, 

if thermally produced 𝑀𝑀 ∼ 𝒪𝒪(keV)
• Ultra-light dark matter

• Suppresses structure due to wavelike 
behaviour, 𝑀𝑀 ∼ 𝒪𝒪(10−22eV)

• Interacting dark matter
• Suppresses structure due to scattering



Markus R. Mosbech - Current and future cosmological probes of dark matter microphysics @M_Mosbech 7

Our example model: DM-𝜈𝜈 scattering

• Good baseline model – baryonic 
and photon physics remain 
unaffected

• Neutrino physics has remaining 
open questions, e.g. masses

• For simplicity: velocity 
independent scattering

𝜈𝜈 𝜈𝜈

𝜒𝜒 𝜒𝜒
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• Linear Boltzmann equations are 
useful for describing early evolution 
(𝑧𝑧 ≥ 50), and large scales (e.g. BAO)

• Super good for CMB predictions
• Produces initial conditions for 

nonlinear simulations
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Linear evolution

Image: ESA and the Planck Collaboration
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Linear evolution equations

• Dark matter: • Neutrinos (non-zero mass)
𝛿̇𝛿𝜒𝜒 = −𝜃𝜃𝜒𝜒 + 3𝜙̇𝜙

𝜃̇𝜃𝜒𝜒 = −
𝑎̇𝑎
𝑎𝑎
𝜃𝜃 + 𝑘𝑘2𝜓𝜓 + 𝐾𝐾𝜒𝜒𝜇̇𝜇𝜒𝜒(𝜃𝜃𝜈𝜈 − 𝜃𝜃𝜒𝜒)

𝐾𝐾𝜒𝜒 ≡
𝜌𝜌𝜈𝜈 + 𝑃𝑃𝜈𝜈
𝜌𝜌𝜒𝜒

𝜇̇𝜇𝜒𝜒 ≡
3𝑘𝑘
4

∫𝑝𝑝2𝑑𝑑𝑑𝑑 𝑝𝑝 𝑓𝑓 0 𝑝𝑝  𝐶𝐶𝜒𝜒 𝑝𝑝
𝜃𝜃𝜒𝜒𝐸𝐸𝜈𝜈 𝑝𝑝
3𝑘𝑘 𝑓𝑓 0 𝑝𝑝

𝑑𝑑𝑓𝑓 0 𝑝𝑝
𝑑𝑑𝑑𝑑 + Ψ𝜈𝜈,1

∫ 𝑝𝑝2𝑑𝑑𝑑𝑑 𝑝𝑝 𝑓𝑓 0 𝑝𝑝  

Ψ̇𝜈𝜈𝜈 = −
𝑝𝑝𝑝𝑝

𝐸𝐸𝜈𝜈 𝑝𝑝
Ψ𝜈𝜈𝜈 − 𝜙̇𝜙

𝑑𝑑 ln𝑓𝑓 0 𝑝𝑝
𝑑𝑑 ln𝑝𝑝

Ψ̇𝜈𝜈𝜈 =
𝑝𝑝𝑝𝑝

3𝐸𝐸𝜈𝜈 𝑝𝑝 Ψ𝜈𝜈𝜈 − 2Ψ𝜈𝜈2 −
𝐸𝐸𝜈𝜈 𝑝𝑝 𝑘𝑘
3𝑝𝑝 𝜓𝜓

𝑑𝑑 ln𝑓𝑓 0 𝑝𝑝
𝑑𝑑 ln𝑝𝑝

Ψ̇𝜈𝜈𝜈𝜈 =
1

2𝑙𝑙 + 1
𝑝𝑝𝑝𝑝

𝐸𝐸𝜈𝜈 𝑝𝑝 Ψ𝜈𝜈(𝑙𝑙−1) − 𝑙𝑙 + 1 Ψ𝜈𝜈 𝑙𝑙+1 − 𝐶𝐶𝜒𝜒Ψ𝜈𝜈𝜈𝜈

+𝐶𝐶𝜒𝜒
𝑣𝑣𝜒𝜒𝐸𝐸𝜈𝜈 𝑝𝑝
3𝑓𝑓 0 𝑝𝑝

𝑑𝑑𝑓𝑓 0 𝑝𝑝
𝑑𝑑𝑑𝑑 − 𝐶𝐶𝜒𝜒Ψ𝜈𝜈𝜈

Ψ̇𝜈𝜈𝜈 = … −
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10𝐶𝐶𝜒𝜒Ψ𝜈𝜈𝜈

𝐶𝐶𝜒𝜒 = 𝑎𝑎 𝑢𝑢𝜈𝜈𝜈𝜈
𝜎𝜎Th𝜌𝜌𝜒𝜒

100 GeV
𝑝𝑝2

𝐸𝐸𝜈𝜈2

𝑢𝑢𝜈𝜈𝜈𝜈 =
𝜎𝜎0
𝜎𝜎Th

𝑚𝑚𝜒𝜒

100 GeV

−1
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“All roads lead to Rome”: 
The suppressed matter power spectrum
• The three “types” of models are 

easily tuned to suppress structure 
at similar scales

•  Different models may have 
qualitatively different signals 
below the suppression scale
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Promising hints

• Lyman-𝛼𝛼 data prefers a non-zero 
interaction strength

• Preferred value 𝑢𝑢𝜈𝜈𝜈𝜈 ∼ 5 ⋅ 10−6

• New analyses of SPT and ACT CMB 
data also reveals preference for 
non-zero interaction

Hooper & Lucca, arXiv:2110.04024

Giarè et al., arXiv:2311.09116
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From suppressed structure to gravitational 
waves
1. Suppressed structure
2. Less/delayed galaxy/progenitor 

formation
3. Less/delayed star formation
4. Fewer/delayed black hole 

binaries formed
5. Fewer binary black hole mergers 

detected
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Simulating suppressed structure

• For the purpose of the GW signal, 
our main interest is in the halo 
mass function

• Problem: unphysical fragmentation 
causes upturn at low masses for 
suppressed structure cosmologies
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Avoiding fragmentation: Analytic HMF?

• Standard Sheth-Tormen HMF does 
not accurately capture suppression

• Boxes stitched together with 
unphysical tail removed – not 
suitable for generating galaxy 
populations
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Avoiding fragmentation: Analytic HMF?

𝑛𝑛idm
𝑛𝑛cdm

=
1

1 +
𝑀𝑀𝛽𝛽
𝑀𝑀

𝛼𝛼 𝛽𝛽 = 10%,  𝛼𝛼 = 0.9
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• We generate realistic galaxy 
populations for our model with 
Galform

• To avoid issues with artificial 
fragmentation, we generate galaxy 
populations with a Monte Carlo 
method.

• Extended Press-Schechter method 
reproduced our fitted HMF

16

Generating galaxy 
populations

Image: NASA Hubble heritage team
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Hierarchical Merger tree

• Progenitors generated through 
Monte Carlo

• Galaxy merger physics determines 
star formation, metallicity etc

• Resolution set by smallest tracked 
progenitor

Galaxy 
today

Progenitor Progenitor tim
e
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Impact on galaxy populations

• Strong interactions ruled out 
already

• Sets strongest bounds yet on this 
interaction – rules out Ly-𝛼𝛼 
preferred value
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Generating compact binary population

• Compact binaries form from 
massive binary star systems

• Compact binary formation rate → 
delayed tracer of star formation

• Not so simple: conversion from 
binary star to compact binary 
depends on metallicity

Image: COMPAS team, compas.science

See:
arXiv:2109.10352
arXiv:2010.00002
arXiv:1806.05820
arXiv:1906.08136

https://compas.science/
https://arxiv.org/abs/2109.10352
https://arxiv.org/abs/2010.00002
https://arxiv.org/abs/1806.05820
https://arxiv.org/abs/1906.08136
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Binary formation rate

• Computed by Compas from 
Galform output

• Generates binaries over cosmic 
time using differential star 
formation rate and metallicity

• Draws from stellar tracks 
computed with stellar evolution 
code MESA
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Formation and coalescence

• Coalescence time also drawn from 
Compas based on generated 
population

• Essentially a time-folding of the 
formation rate
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Constraining DM with LIGO/VIRGO/Kagra

• Current generation of GW 
observatories “only” constrain the 
rate well at low 𝑧𝑧.

• Current constraints on local GW 
rate not strong enough to rule 
interacting DM out (or in)

• With our modelling, ΛCDM is at 
the upper end of the allowed 
range.
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Beyond LVK: The next generation

• The rate is strongly affected by 
delayed structure formation

• High-redshift observations will be 
ideal for constraining these models

• Einstein Telescope + Cosmic 
Explorer provides high-redshift 
sensitivity

Image: Einstein Telescope, https://www.et-gw.eu/

https://www.et-gw.eu/
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Next generation detection forecast

• The next generation can see 
almost every event

• This will be able to set powerful 
constraints
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Binary formation uncertainty

• Binary formation/merger model 
relies on set of astro parameters

• Qualitative effect on 
formation/merger rate different 
than interacting DM
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Compare and contrast: warm dark matter

• Our interacting models are 
indistinguishable from warm dark 
matter at 𝑧𝑧 ≤ 10

• The upside of which: constraints 
on warm dark matter can be 
directly mapped to interacting 
models

𝒎𝒎𝒘𝒘𝒘𝒘𝒘𝒘 𝒖𝒖𝝂𝝂𝝂𝝂𝝂𝝂 𝒖𝒖𝜸𝜸𝜸𝜸𝜸𝜸

1 keV 8.5 × 10−7 4.0 × 10−7

2 keV 1.75 × 10−7 9.0 × 10−8

3 keV 7 × 10−8 3.5 × 10−8

4 keV 3.6 × 10−8 1.8 × 10−8
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Complementary constraints: 21cm with SKAO

• SKAO forecasts on WDM constraint 
can be mapped to interacting DM

• At early times, nonlinear evolution 
has not yet erased oscillations

• High-precision, high redshift 
measurements at high 𝑘𝑘 needed to 
distinguish

• SKAO can in principle measure the 
21 cm line at these redshifts.
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Conclusions

• Next generation GW observatories 
can be used constraining 
suppressed structure, improving 
limits

• SKA will be able to similarly 
constrain DM models with 
suppressed structure

• High redshift measurements will 
be key to distinguishing between 
models suppressing small scale 
power

Data Max 𝒖𝒖𝝂𝝂𝝂𝝂𝝂𝝂 Source

Planck + SDSS ~3 × 10−4 Mosbech et al.
arXiv:2011.04206

Planck + 
SDSS+Ly𝛼𝛼 ~10−5 Hooper & Lucca

arXiv:2110.04024

ACT/SPT + BAO 
(+ Planck) ~10−4 Giarè et al. 

arXiv:2311.09116

SKA 21cm line 
intensity map ~4 × 10−8*

Mosbech, Boehm, & 
Wong
arXiv.2207.03107

2dF galaxy 
counts ~3 × 10−6-10−7 Mosbech et al.

arXiv:2207.14126

Einstein 
Telescope + 
Cosmic Explorer

~4 × 10−7* Mosbech et al.
arXiv:2207.14126

*: Forecast – constraint assuming non-detection
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