

DARK MATTER MICROPHYSICS WITH NEXT GENERATION OBSERVATORIES

MARKUS R. MOSBECH

ICAP, September 8, 2022, IAP Paris

Overview

- Quick intro
- Linear predictions
- SKA constraints from 21 cm line intensity mapping
- Gravitational waves as a novel type of constraint

The relevant papers:

- M. Mosbech, C. Boehm, S. Hannestad, O. Mena, J. Stadler, & Y³ Wong The full Boltzmann hierarchy for dark matter-massive neutrino interactions arXiv:2011.04206
- M. Mosbech, C. Boehm, & Y³ Wong *Probing dark matter interactions with SKA* arXiv:2207.03107
- M. Mosbech, A. Jenkins, S. Bose, C. Boehm, M. Sakellariadou, & Y³ Wong Gravitational-wave event rates as a new probe for dark matter microphysics arXiv:2207.14126

WHAT DO WE KNOW ABOUT DARK MATTER?

- Quite a lot of it out there
- Zero, or very limited, interactions with the standard model
- Clusters gravitationally, at least on large scales
- Essentially: we know a lot about what it is *not*, but not a lot about what it *is*

Our example scenario and its constraints

- Our analysis is mainly based on a model with interactions between a heavy DM particle and the standard model neutrinos
- Interaction strength parameterised through

$$u_{\nu DM} = \frac{\sigma_0}{\sigma_{Th}} \left(\frac{m_{DM}}{100 \; GeV}\right)^{-1}$$

Data	Max u_{vDM}	Source
Planck + SDSS	$\sim 3 \times 10^{-4}$	Mosbech et al. arXiv:2011.04206
Planck + SDSS+Ly α	$\sim 10^{-5}$	Hooper & Lucca arXiv:2110.04024

First steps: Linear evolution

- Linear Boltzmann equations are useful for describing early evolution ($z \ge 50$), and large scales (e.g. BAO)
- Super good for CMB predictions
- Produces initial conditions for nonlinear simulations

Distinguishing models (or not) I: linear results

- "Canonical" warm dark matter suppresses small-scale structure due to free-streaming
- Models with early interactions between DM and relativistic species suppresses small-scale structure through collisions. Contains oscillations.

3 keV

4 keV

 7×10^{-8}

 3.6×10^{-8}

Distinguishing models (or not) II: The "late"

- We find that interacting models are indistinguishable from warm dark matter at $z \le 10$
- The upside of which: constraints on warm dark matter can be directly mapped to interacting models

Constraining with the Square Kilometre Array

- SKA will be able to map the density of neutral hydrogen at high redshift with the 21 cm line through line intensity mapping.
- SKA 21 cm intensity mapping forecasts have already been done for warm dark matter, so we can adapt to interacting.

Data	Max u_{vDM}	Source
Planck + SDSS	$\sim 3 \times 10^{-4}$	Mosbech et al. arXiv:2011.04206
Planck + SDSS+Ly α	$\sim 10^{-5}$	Hooper & Lucca arXiv:2110.04024
SKA 21cm line intensity map	$\sim 4 \times 10^{-8}$ *	Mosbech, Boehm, & Wong arXiv.2207.03107

*: Forecast – constraint assuming non-detection

Distinguishing models (or not) II: The "early"

- At early times, nonlinear evolution has not yet erased oscillations
- High-precision, high redshift measurements at high k needed to distinguish
- SKA can in principle measure the 21 cm line at these redshifts.
- Dedicated high-resolution, highredshift studies warranted

From suppressed structure to gravitational waves

- 1. Suppressed structure
- 2. Less/delayed galaxy/progenitor formation
- 3. Less/delayed star formation
- 4. Fewer/delayed black hole binaries formed
- 5. Fewer binary black hole mergers detected

Impact on galaxy formation

- Less structure means fewer galaxies, significant if the suppression affects large enough scales
- Rules out $u_{\nu DM} \ge 3 \times 10^{-6}$

The gravitational wave merger rate

- The effect of suppressed structure formation is clear on the merger rate
- Effect is stronger at early times
- The base cold dark matter model is only just compatible with current data (for our choice of astro parameters)

Next generation GW observatories

• The next generation can see almost every event

• This will be able to set powerful constraints

Conclusions

- SKA will be able greatly constrain DM models with suppressed structure
- Next generation GW observatories can be used for complementary constraints
- High redshift measurements will be key to distinguishing between models suppressing small scale power

Data	Max u_{vDM}	Source
Planck + SDSS	$\sim 3 \times 10^{-4}$	Mosbech et al. arXiv:2011.04206
Planck + SDSS+Ly α	$\sim 10^{-5}$	Hooper & Lucca arXiv:2110.04024
SKA 21cm line intensity map	$\sim 4 \times 10^{-8*}$	Mosbech, Boehm, & Wong arXiv.2207.03107
2dF galaxy counts	$\sim 3 \times 10^{-6} - 10^{-7}$	Mosbech et al. arXiv:2207.14126
Einstein Telescope + Cosmic Explorer	$\sim 4 \times 10^{-8*}$	Mosbech et al. arXiv:2207.14126

*: Forecast – constraint assuming non-detection

